Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Animals (Basel) ; 12(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139252

ABSTRACT

The application of precision livestock farming (PLF) technologies will underpin new strategies to support the control of livestock disease. However, PLF technology is underexploited within the sheep industry compared to other livestock sectors, and research is essential to identify opportunities for PLF applications. These opportunities include the control of endemic sheep disease such as parasitic gastroenteritis, caused by gastrointestinal nematode infections, which is estimated to cost the European sheep industry EUR 120 million annually. In this study, tri-axial accelerometers recorded the behaviour of 54 periparturient Welsh Mule ewes to discover if gastrointestinal nematode (GIN) infection burden, as measured by faecal egg count (FEC), was associated with behavioural variation. Linear mixed models identified that increasing FECs in periparturient ewes were significantly associated with a greater number of lying bouts per day and lower bout durations (p = 0.013 and p = 0.010, respectively). The results demonstrate that FECs of housed periparturient ewes are associated with detectable variations in ewe behaviour, and as such, with further investigation there is potential to develop future targeted selective treatment protocols against GIN in sheep based on behaviour as measured by PLF technologies.

3.
Parasitology ; 148(12): 1490-1496, 2021 10.
Article in English | MEDLINE | ID: mdl-34193321

ABSTRACT

Environmental DNA (eDNA) surveying has potential to become a powerful tool for sustainable parasite control. As trematode parasites require an intermediate snail host that is often aquatic or amphibious to fulfil their lifecycle, water-based eDNA analyses can be used to screen habitats for the presence of snail hosts and identify trematode infection risk areas. The aim of this study was to identify climatic and environmental factors associated with the detection of Galba truncatula eDNA. Fourteen potential G. truncatula habitats on two farms were surveyed over a 9-month period, with eDNA detected using a filter capture, extraction and PCR protocol with data analysed using a generalized estimation equation. The probability of detecting G. truncatula eDNA increased in habitats where snails were visually detected, as temperature increased, and as water pH decreased (P < 0.05). Rainfall was positively associated with eDNA detection in watercourse habitats on farm A, but negatively associated with eDNA detection in watercourse habitats on farm B (P < 0.001), which may be explained by differences in watercourse gradient. This study is the first to identify factors associated with trematode intermediate snail host eDNA detection. These factors should be considered in standardized protocols to evaluate the results of future eDNA surveys.


Subject(s)
DNA, Environmental , Trematoda , Trematode Infections , Animals , Ecosystem , Trematoda/genetics , Water
4.
Parasit Vectors ; 13(1): 496, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32998778

ABSTRACT

BACKGROUND: Fascioliasis caused by the trematodes Fasciola hepatica and F. gigantica, is a global neglected zoonotic disease estimated to cost the livestock industry over €2.5 billion annually. Farm management measures and sustainable use of anthelmintics can, in principle, effectively control trematode infection in livestock and reduce the rate of developing anthelmintic resistance. Previously, we designed an environmental DNA (eDNA) assay to identify a common trematode intermediate host, the freshwater snail Galba truncatula, in water sources to measure specific trematode infection risk areas on pasture-land. To improve this procedure, we now report a loop-mediated isothermal amplification (LAMP) assay to identify G. truncatula eDNA. METHODS: A LAMP assay was designed and optimised (e.g. temperature, time duration and primer concentration) to identify G. truncatula DNA. The ability of the LAMP assay to target G. truncatula DNA was identified, and LAMP assay limit of detection was investigated in comparison to conventional PCR. In the field, 48 water samples were collected from stream, ditch and water pool habitats in four locations at two Aberystwyth University farms over a seven week period to investigate the applicability of the LAMP assay for use on eDNA samples, in comparison to conventional PCR. RESULTS: The LAMP assay delivered detectable results in 30 min at 63 °C. The assay discriminated between G. truncatula DNA and non-target DNA, presenting a level of DNA detection comparable to conventional PCR. No significant difference was found between the ability of the LAMP and PCR assay to identify G. truncatula eDNA in water samples. Kappa coefficient analysis revealed a moderate level of agreement between LAMP and PCR assays. CONCLUSIONS: This study demonstrated that the LAMP assay can detect G. truncatula eDNA in a simple and rapid manner. The LAMP assay may become a valuable tool to determine optimum pasture management for trematode parasite control.


Subject(s)
DNA, Environmental/genetics , Fascioliasis/veterinary , Fresh Water/parasitology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Snails/genetics , Animals , Ecosystem , Fasciola hepatica/genetics , Fasciola hepatica/physiology , Fascioliasis/parasitology , Fascioliasis/prevention & control , Fascioliasis/transmission , Livestock/parasitology , Snails/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...